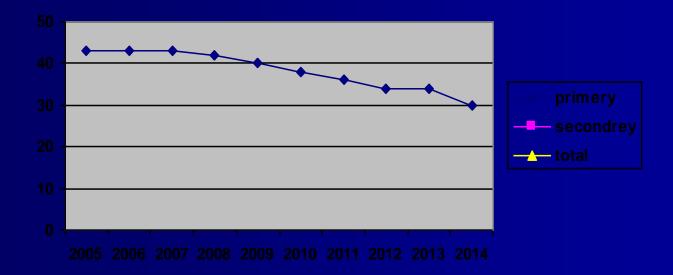
Feasibility Study of Carbon Dioxide Capture from Ramin Power Plants And Injection In Khuzestan Oilfields

Rahbord Energy Alborz



- 30 oil fields
- 47 reservoir

One of fields production forecast 2005-2015

- Gas injection and pressure maintenance plan:
- Ahvaz bangestan
- Aghajari
- Kupal
- Binak
- Maroon
- Naft sefid
- Bibi Hakimeh

- Gas required:
- 217 MSCMD 2014
- Total: 79.205 BSCM Y 2014
- Total 1355 SBCM Y 2005-2015
- Gas will supply from :North Pars ,South Pars ,Pazanan, Aghar ,Dalan, Sahand ,Ghaleh nar

Khuzestan Main stationary CO2 Sources

- Power Plants: Ramin, Zargan, Abadan
- Refineries: Abadan
- Petrochemical: BIPC, Razi,...
- Industries: Cement factory, Ahvaz steel company

- Ramin power plant located 25 KM north east of Ahvaz city
- **Start of power generation :1979**
- Ramin contains 6 unit with 350 MW capacity
- Steam boiler cycle
- 3 stage 1 shaft steam turbine each 350 MW
- Steam pressure:245 Kg/cm2
- Steam Temperature :545 C
- Seam production: 1070 ton/hour
- Wet cooling tower
- Cooling water consumption :36000 M3/hour

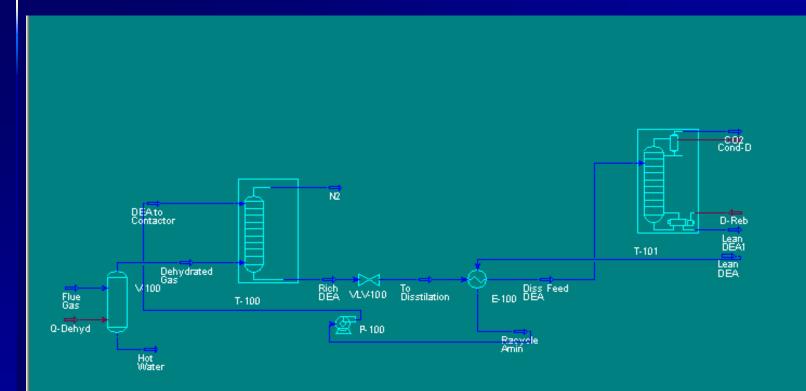
- Real capacity:1748 MW
- Efficiency:37.2%
- Total units shut down per year :84
- Capacity factor:65%
- % excess air:100%
- Fuel consumption:
- Each unit:70000 m3/hour natural gas
- 70 m3/hour fuel oil

- CO2 production:
- 4793980 ton per year with Natural gas
- 7085471 ton per year with heavy fuel oil
- Flue gas temperature:120-140C
- Total flue gas flow rate:7798000 m3/hour
- Flue gas temperature:4.27 Kg/m2
- Stack :3 stacks

Capturing plant Designing

- Flue gas analysis
- Combustion analysis according to fuel composition
- Feed gas characterization
- Plant conceptual design
- Process basis: Amine cycle
- Obtain data from simulator
- Stream specs setting
- PFD & P&ID
- Equipment sizing

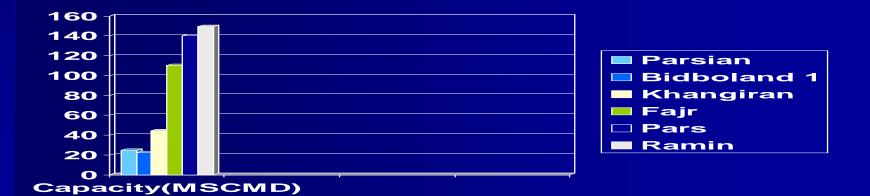
Capturing plant



Process description

- Use MEA 28% as absorbent
- SO2 washing unit (for fuel oil)
- Flue gas cooler and gas dehydrator
- Absorption column T-100
- Absorption in low Temperature, high Pressure
- Reducing pressure of rich Amine stream
- Amine Regeneration in 90 C, low pressure
- Recycling lean Amine
- Make up water
- Removing NOx (ppm tower)
- CO2 cooling dehydration

Process description



Capturing plant

- CO2 flow rate :178.6 Ton/hour
- CO2 purity :more than 98%
- Plant capacity:149.6 M cubic meter day

Site Selection

- Criteria:
- Reservoir history
- Reservoir Capacity
- Crude density and viscosity
- Distance from power plant
- Reservoir pressure
- Geology and safe storage

Site Selection: with MEC

Reservior N	Option Exit			Unit: 💿 SI Units (Metri	a) 🦳 Imparial Lleita (F	Selet:
0.0000.0000.000	Type By Databa	ise 🔹			c) 🔘 impenar onits (r	
Screen	Results	Reservoir and Rock Properties Fi	uid Properties OOIP, Pr	roduction and Injection Pla	n Calculated Values	Production Priority
С	🖳 frmWeights	P 2 1 N		Meter		
	Weight	s of Screening V	/alues	M ²		
Nitr	Co2 Weighting	Nitrogen Weighting Methane We	eighting	Meter		
Mel	Depth	25		Meter		
	Oil Density	31		•		
Ra	Temprature Oil Viscosity	18		Degrees	C°	
	Oil Saturation					
		s Default Values Clos		kPa		
	Save Changes		ie	kPa kPa		
		Fracturing:	No	▼		
		Horizontal Permeability:		mD		
		Vertical Permeability:		mD		
		Active Water Drive:	No	•		

Site Selection: with MEC

oFrm le Screening Option Exit				
Reservior Name Screening Type By Datab	ase 🔹		Unit: SI Units (Metric) Imperial Units (Field)	
Screen Results	Reservoir and Rock Properties	Fluid Properties OOIP, Pr	roduction and Injection Plan Calculated Values Production Priority	(
C O 2	Reservoir Length: Reservoir Width: Reservoir Area		Meter Meter	
Nitrogen	Reservoir Thickness: Porosity:		M ² Meter	
Methane	Depth: Formation Type:		Meter	
Ranking	Reservoir Temperature: Current Oil Saturation:	i [Degrees C*	
	Initial Water Saturation: Residual Oil Saturation:			
	Initial Pressure: Bubble Point Pressure: Current Pressure:		kPa kPa kPa	
	Fracturing	No	-	
	Horizontal Permeability		mD mD	
	Active Water Drive: Wet Type:		▼ ▼ Next	

Site Selection: with MEC

	Screening Unteria	Keservoir Data	
PASS	Depth 2624 <	10100 Foo	ot
PASS	Reservoir Temperature 77 <	213 De	gree F°
FAIL	(Oil Density) surface 25 <	24 AP	1 I
PASS	Dead Oil Viscosity 10 >	2.8 ср	
PASS	Current Oil saturation 0.25 <=	0.38 fra	ction

Active val	ter Drive No	
(CO2 Minimum Miscibility Pressure	e: (MMP 3460.04	PSI
CO2 MMP was estimated for pure CO2 using notation of CH4 and N2 in the reservoir	-	
When there is NOT an Active Water Drive, The Pressure.	e CO2 MMP must be les	s than the Fracturing
PASS MMP < Frac	cturing Pressure:	PSI
Success degree 150		
Success degree 150 War1 : hold energy penalty,oil trapping prob	lem temporary misciblty	r.
-	lem temporary misciblty	r.
	lem temporary misciblty	t.
-	lem temporary misciblty	r.

Bangestan

- Major Bangestan Reservoirs are located in vicinity.
- These reservoirs have been explored in the period between 1958 to 1968.
- Production from these filed started on 1971
- Initial pressure of this reservoir was more than 5500 psig
- Porosity:0.14
- Viscosity:1. CP
- API:25.5
- Temperature:220F
- Primary recovery factor:0.11

One of Bangestan Reservoirs

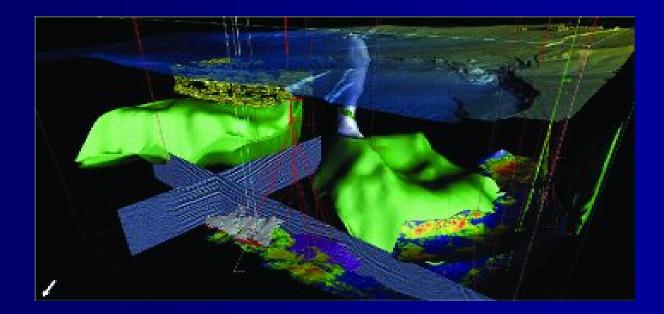
Transfer

- 16 inch carbon steel
- Internal epoxy coating
- Pipe line pressure 90 bar
- Pipe line length:25 KM
- Compressor station: just in start point

Compressor station

- 1 unit start point of pipeline
- Max pressure :90 bar
- 1 unit in injection site
- Max pressure:387.5 bar
- Total capacity:56.95

Cost estimation



- Capturing plant :920 M\$
- Pipe line:75 M\$
- Compressor station:150 M\$
- Drilling completion & Surface facilities:170 M\$
- Total:1248 Million \$
- Operating costs:3% per year
- Steam 1400 Tons per hour
- Electrical Power : 392 MW

Oil production

- Increase in production 70000bbl day
- Based on CO2 Injection Simulation

Economic evaluation

- Project economy evaluated in different level of oil price
- Oil prices considered at 28\$,35\$,45\$,55\$,70\$,85\$ per barrel
- Investment recovery estimated In each oil price level

Economic evaluation

- Return time changes between 6.5 years at price 28\$/bbl to 1.9 years at price 85\$/bbl in low production scenario
- Return time changes between 3.5 years at price 28\$/bbl to 1.1 years at price 85\$/bbl in high production scenario
- Carbon dioxide avoided cost: 49 \$/ton CO2

Economic evaluation

- Economy can be improved by Environmental aids
- CDM facilities can improve economy between 15-30% depend on oil price level

Recommendation:

More detailed design and feasibility study should be defined about Ramin project to obtain better economical outlook

Reservoir study should be defined for clear site selection

Thanks for attention

